Entropy, Weil-petersson Translation Distance and Gromov Norm for Surface Automorphisms

نویسندگان

  • SADAYOSHI KOJIMA
  • S. KOJIMA
چکیده

Thanks to a theorem of Brock on the comparison of Weil-Petersson translation distances and hyperbolic volumes of mapping tori for pseudoAnosovs, we prove that the entropy of a surface automorphism in general has linear bounds in terms of a Gromov norm of its mapping torus from below and an inbounded geometry case from above. We also prove that the WeilPetersson translation distance does the same from both sides in general. The proofs are in fact immediately derived from the theorem of Brock, together with some other strong theorems and small observations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Weil-Petersson geometry of the five-times punctured sphere

We give a new proof that the completion of the Weil-Petersson metric on Teichmüller space is Gromov-hyperbolic if the surface is a five-times punctured sphere or a twice-punctured torus. Our methods make use of the synthetic geometry of the Weil-Petersson metric.

متن کامل

Curvature and rank of Teichmüller space

Let S be a surface with genus g and n boundary components and let d(S) = 3g − 3 + n denote the number of curves in any pants decomposition of S. We employ metric properties of the graph of pants decompositions CP(S) prove that the Weil-Petersson metric on Teichmüller space Teich(S) is Gromov-hyperbolic if and only if d(S) ≤ 2. When d(S) ≥ 3 the Weil-Petersson metric has higher rank in the sense...

متن کامل

Asymptotics of Weil-Petersson geodesics II: bounded geometry and unbounded entropy

We use ending laminations for Weil-Petersson geodesics to establish that bounded geometry is equivalent to bounded combinatorics for WeilPetersson geodesic segments, rays, and lines. Further, a more general notion of non-annular bounded combinatorics, which allows arbitrarily large Dehn-twisting, corresponds to an equivalent condition for Weil-Petersson geodesics. As an application, we show the...

متن کامل

Weil-Petersson translation distance and volumes of mapping tori

Given a closed hyperbolic 3-manifold Tψ that fibers over the circle with monodromy ψ : S → S, the monodromy ψ determines an isometry of Teichmüller space with its Weil-Petersson metric whose translation distance ‖ψ‖WP is positive. We show there is a constant K ≥ 1 depending only on the topology of S so that the volume of Tψ satisfies ‖ψ‖WP/K ≤ vol(Tψ) ≤ K‖ψ‖WP.

متن کامل

Asymptotics of Weil-Petersson geodesics I: ending laminations, recurrence, and flows

We define an ending lamination for a Weil-Petersson geodesic ray. Despite the lack of a natural visual boundary for the Weil-Petersson metric [Br2], these ending laminations provide an effective boundary theory that encodes much of its asymptotic CAT(0) geometry. In particular, we prove an ending lamination theorem (Theorem 1.1) for the full-measure set of rays that recur to the thick part, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012